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ON THE INFLUENCES OF CHANGES OF Cl\..RRIER DENSITY ON 
THE CURRENT FLOW m A CHANNEL 

ABSTRACT 

A study is made of the effect of varying the density of free charge 

carriers in a semiconductor channel under the influence of a retarding 

field. It is found that the conditions required for charge binding in 

the space-cr~rge region are dr&~atically altered by cbBnges in the 

distrubution of charge. The transconductance per unit current is also 

drastically altered. Based on the study) it can be presumed that signif

icantly more efficient field effect transistors can be built than have 

been obtained to date. 

3 



ABSTRACT. 

TABLE OF SYMBOLS • 

INTRODUCTION. 

THEORY. 

CONCLUSIONS 

BIBLIOGRAPHY. 

APPENDIX. 

DISTRIBUTION LIST 

TABLE OF CONTENTS 

5 

Page 

3 

7 

9 

10 

23 

24 

25 

27 



a 

a. 
J 

b 

e 
0 

E 
y 

~ 

g /I m 

n 

N ag 

N (y) 
a 

p(y) 

TABLE OF SYMBOLS 

half-width of channel 

coefficient in power series 

t~lf-width of conducting section of charu1el 

dielectric permittivity of free space 

y component of electric field 

transconductance 

transconductance per unit current 

exponent in power series 

Boltzmann's constant 

dielectric constant of space-charge region 

Ke 
0 

value of K for germanium 

value of K for silicon 

length of channel in direction of current flow 

exponent on y 

number of acceptors in gate 

number of acceptors as a function of y in channel 

number of donors in gate 

number of doners as a function of y in channel 

charge density in channel at y >b +~(a small increment) 

maximum charge density for modified catenary distribution 

charge density in n+ region 

charge density constant} in arbitrary units 

charge density in channel 

maximum charge density for inverted parabola distribution 

total available mobile chargedensity 
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TABLE OF SYMBOLS (Contd) 

charge on electron 

absolute temperature 

potential difference 

potential difference from the point y = y to y = a(= 1) 

potential across the space-charge region 

value of W for b = 0 

coordinate at right-angles to y and L 

transverse coordinate in channel (toward gate from center) 

direction of source-to-drain field 

infinitessimal 

Fermi constant 

mobility 

conductivity 
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INTRODUCTION 

The ber~vior of the cr~nnel for the field-effect, or unipolar, 
* transistor has been treated in some detail in many recent papers , and 

generally is consequently rather well understood. In fact, it appeared 

~~til recently that the general lL~itations predicted theoretically were 

complied with, and that as a consequence, no further analytical study 

would be required. 

A new limiting condition applying to these devices has recently 

been found by the authors. This makes necessary a reconsideration of 

certain aspects of the theory of channel behavior. This limitation is 

a transconductance-per-unit-current limitation of the kind encountered 

with both bipolar transistors and electron tubes. It was not predicted 

by earlier theory, which showed a power-law relationship between trans

conductance and current. 

The transconductance-per-unit-current limit is the same one that is 

encountered with bipolar transistors, namely, 39,000 micromhos per milli

ampere. It occurs at very small values of channel current, values less 

than a microampere in general, and may exist for several orders of 

rr~gnitude of current. 

There is also a philosophical difficulty associated with the concept 

of pinchoff as it is applied to these devices. Strictly, pinchoff in 

the precise meaning of the term would be a condition of total cutoff, or 

a reduction of the channel current to zero value, or at most the 

uncontrollable leakage current. The word pinchoff as normally applied 

with these devices is a dynamical kind of limitation in that a condition 

is reached in which an increase of source-to-drain voltage results in 

almost no change of current, or a condition of near-infinite dynamic 

impedance develops. 

This behavior is what one might call a "saturated channel" effect, 

in that over a range of applied voltage, a certain number of charges 

could diffuse through a gate area, and the magnitude of the voltage 

* A bibliography is presented on page 24 of this report. 
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applied on the drain or collector then would be relatively unimportant. 

Such a condition could develop if the collection field swept out the 

carriers at the exit end of the channel through the gate region, and 

the process of getting through the gate region then was one of diffusion. 

With such a situation, as the gate bias is increased to limit the 

channel size, a point could be reached at which the gates might make 

contact, and conduction in limited amount might continue through tunnel

ing. Under such conditions, the operation of the transistor might 

approximate that of a conventional bipolar transistor, with the gate 

region formir~ an incipient base region. The conventional transconduc~ 

tance limitation applicable to bipolar transistors could be expected to 

apply. It is the purpose of this paper to re-examine the conventional 

theory for field-effect devices to see how it can be used as a basis 

for a more rigorous explanation of the effects as observed. 

THEORY 

The discussion to follow is based on, and parallels closely up to 

a point, the study presented by Shockley in his paper "A Unipolar 'Field

Effect' Transistor", published in the November 1952 issue of the Proceed

ingsof the I. R. E. First the theory of the channel as given there is 

reviewed briefly, and then a further analytical look is taken at some of 

the relations given to see how they might be modified to clarify ideas 

on device behavior. It will become evident from these relations that 

the nominal transconductance efficiency can readily be changed by some 

changes in the characteristics built into the channel. 

If one takes the structure of the field-effect device to be essentially 

as given by Shockley in Figure l (his 

Figure 1, also), it is clear that a 

channel exists which is widened 

and narrowed through the space

charge action by the n+ gate re

gions, and a current flow from the 

source to the drain will be influ
FIG. I -SPACE- CHARGE REGION AH0 CHANNEL 

fj A In•) p (11+) STRUCTURE 

enced by the widths of the space-charge regions. 
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Generally, the assumption is made that the magnitude of the reverse 

bias across the semiconductor juntion as seen from source to gate and 

from drain to gate are approximately the same, at least in the initial 

stages of the calculation. This assumption assures approximate parallelism 

of the two sides of the channel, a situation which cannot be exactly true 

in practice. Such an assumption is convenient for an initial approximation, 

however. It is also assumed that the doping in the gate layers, marked 

n+, is large compared to that in the channel. For our approximation, 

this is assumed to be true, but for more precise determination, some 

alterations in the calculation might be required. Based on the definitions 

listed in the Table of Symbols, the charge densities in the p and n+ 

regions are: 

p(y) = q[N (y) 
a 

Nd(y)] in the p-region (la) 

q(Ndg in the n+-region (lb) 

where q is the charge on the electron, and the various N's are the numbers 

of the donor and acceptor centers in the respective layers. Clearly, 

only part of the p~region may be assumed to be a conducting channel, as 

the charge carriers in the space-charge region are essentially bound by 

the potential applied to the gate. 

Hence, the density of the holes in the central region of the channel 

is a function of the carrier density, and the conductivity may be written 

in terms of the number and the mobility in the equation: 

cr(y) = l-LP(Y) (2) 

where ll is the mobility of the holes. 

The charge distribution in the space-charge region on either side 

of the channel is assumed to be symmetrical about the point y = 0 through 

the source and the drain terminals. In the simple case considered by 

Shockley, the density is constant and negative within the space-charge 

region, and practically constant, positive, and very much larger within 
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the terminal, or n+, region. In practice, of course, neither of these 

is truly constant, but both may be idealized to satisfy some chosen 

arbitrary form, such as the constant values chosen by Shockley. 

B?cause of the necessary existance of charge equality across the 

barrier in a bow~d-cbarge, or space-charge, region, it is to be noted 

that the total charge within the space-charge region must equal that 

collected opposite it in the n+ or gate region. Otherwise, there will 

be a net electric field. 

The nature of the electric field in the space-charge region may be 

approxL~ted by the application of Poisson's equation to the one-dimensional 

distribution which is obtained by considering the structure to be a 

section of an infinite structure in the "z" coordinate, and assuming 

that within the region where 0 < x < L the field is independent of the 

coordinate x. This condition is postulated by the assumption that the 

source-to-gate diode voltage is substantially equal to the drain-to-gate 

voltage. The resulting equation is: 

2 2 
Ke d VI dy = - Ke dE I dy 

0 c y - p(y) (3) 

where p(y) is, as before, the charge density as a function of the coordi

nate y. 

Near the point y = b, the space, or bound, charge changes from a 

value of zero withy just less than b to a value equal to - pb for y 

just greater than b. Shockley points out that this transition region 

is about one "Debye Length" thick, and that in it, the potential across 

the barrier changes by the Fermi potential, or kT/q = A-l where k is 

Boltzmann's constant, and T is the absolute temperature. Understandably, 

the "De bye Length" must be small compared to the lengths, a, b, and L, 

and the Fermi potential must be small compared to the junction potential, 

W, and accordingly may be neglected in comparison. As a consequence of 

these relations we have: 
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E = 0 y 
at 

dE jdy = - pjKe = - p(y)/Ke ; 
y 0 0 

y = b (4) 

y>b. ( 5) 

Now, in the case where the charge density is uniform, Equation (5) may 

be integrated to give: 

E = ~ p (y - b)jKe 
y 0 0 

(6) 

In this instance, the magnitude of the electric field increases linearly 

across the space-charge region, and decreases back to zero across the n+ 

semiconductor material for the terminal of the junction. 

The potential difference between any point within the space-charge 

and the boundary of the gate terminal may also be determined through 

the use of a definite integral, or strictly a pair of definite integrals, 

one over the space-charge region, and the other over the n+ region. 

Because of the relatively high charge density in the n+ regton and its 

relative thinness, the potential difference is primarily that across the 

space-charge, or p, region. The general integral takes the form: 

E dy 
y 

(7) 

When the charge throughout the region is uniformly distributed, Equation 

(7) simplifies to the form: 

V = - ( P / 2K) [ ( y - b ) 
2 

- (a 
0 

(8) 

where K, the dielectric constant, has the value Ke , and is measured 
0 

normally in farads per meter in the mks system. For the problem at 

hand; it can be equally well taken in terms of farads per centimeter by 

using mobilities in cm
2 

per volt-second, and conductivities in ohms per 

centimeter. Typical values of K of 16 and 12 respectively for germanium 

and silicon lead to the values of K for germanium and silicon of: 

KGe = 1.42 x l0-
12 

farads per centLmeter 

KSi = 1.06 x l0-
12 

farads per centimeter 

13 
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In terms of the previous equations and relations, the potential which will 

exist in the charu1el is: 

v = - s: E dy 
y (ll) 

For the uniform-charge case, this leads to the potential on the edge of 

the active channel as: 

(12) 

where the value of W is given by: 
0 

2 
W = p a /2K 

0 0 
(13) 

Clearly, the value of W is the voltage required to yield a minimum·value 
0 

of y, or b, equal to zero, or the voltage required just to "close" the 

channel. 

Actually, the problem which really concerns us is the determination 

of how to minimize the total voltage required to "close" the channel for 

a given maxLmnm current carrying capacity. For this reason, it is 

important to restudy the simplified problem to attempt to find the form 

which p(y) should take in order to assure that the value of the integral, 

Equation (11), will be as small. as possible subject to the integral: 

(14) 

For simplification of calculations, we now take the ·value of a as unity. 

Superficially, the problem of minimizing the voltage would appear 

to be one in the calculus of variations, and it should be examined to see 

if there is in fact a minimum, and if there is not, under what conditions 

the general fo11n can be led tow~rd a min~uwu value subject to construction 

* limitations . In addition, it is of interest to examine the variation of 

the width of the space-charge region with the applied potential across it. 

* Dr. c. Masaitis of the Ballistic Research Laboratories has pointed out 
to the authors that a tractible variational problem probably does not 
exist. This is also the implication of the manner of variation to be 
noted as a function of n. 

l4 



The first step in the study of the relation of channel characteristics 

to the potential gradient across the space-charge region is to determine 

the basic general forms for the equations for the channel current and the 

space-charge voltage expressed in terms which can be related to channel 

theory. The same basis equations which have been used above are again 

applicable, with the only difference being a somewhat greater complexity 

in the expressions. 

Let it be assumed for an initial consideration that the expression 

for the charge in the channel takes the form: 

(15) 

where the value of pn is such that the total integrated charge within 

the entire channel region Wl~~ oe P~· In each case, p~ is the density 

of the charges corresponding to the channel under consideration but for 

a channel having a constant charge density, that is, with n = 0. The 

range for the values of y is 0 ~ y ~ 1. 

Equality of maximum total conduction (the full-on condition) for 

the channel requires that the integral of available carriers across the 

channel for each configuration be the same, and in each case, this total 

is taken to be PT. Setting up .the basic integral on the assumption that 

p = p yn, one obtains: 
n 

.. 1 
p~ = J 0 pnyndy = Pn/(n + l) . 

Clearly, the value required for pn is (n + l)pT. Substituting in the 

basic differential equation, one gets: 

Integrating between the limits zero and y gives: 

rY 
E = - (1/K)p 

y n Jo 
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for n and l:"n inserting the limits 

I n+l 
E = - (p K)y . 

y 'f 
(19) 

This equation may be integrated once more to determi~e the voltage 

required to bind the charge in the space-charge region. The limits in 

this ir~tance are from y to ~~ity instead of from zero to y: 

Integrating gives: 

v 
y 

v 
y 

[ I n+2 '1 = - p'f K ( n + 2 ) ]y 
y 

= [p IK(n + 2)][1 - yn+2] . 
'f 

(20) 

(21) 

It is evident from this equation that the voltage changes very little for 

values of y near zero and values of n greater than three or four. Since 

the overall value of V across 
y 

it is evident that the total voltage required to bind the charge is 

inversely proportional to (n + 2), o~ the required voltage decreases 

rapidly with an increase of exponent. A set of curves showing the 

variation of V with y for different values of the exponent are shown 

in Figure 2. 

(22) 

The transconductance per unit current for active devices is one of 

the more important parameters first because solid-state devices are 

subject to a limitation in terms of this parameter (the Fermi coDstant), 

and second because this parameter tends to indicate the relative efficiency 

of such devices. For this reason, the equation defining the parameter 

is now derived. 

It is not possible to make the differentiation to determine diidV 

directly inasmuch as both the current and the voltage are functions of 

the variable y, and often it is difficult to convert functions of this 

kind into explicit form for direct differentiation. Fortunately, 
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however, the derivative may be found by taking the partial derivative of 

both the function for I and the function for V with respect to the variable 

y) and the quotient gives the appropriate derivative. 

-The current flow in the channel is proportional to the number of 

unbound charges available as a function of y within the channel: 

I = 1-L Jyo n p y dy = n 
(23) 

where, as before, the mu is the mobility of the carriers. Since this 

integral is taken from zero to the variable as the upper limit, its 

derivative takes the form: 

di/dy = iJ.(n .(24) 

Also, the ratio diiidy is given by t!-"1e equation: 

di/Idy = (n + 1)/y (25) 

Differentiating Equation (21) with respect to y gives the result: 

I I n+l 
dVY dy = - (pT K)y . (26) 

Dividing Equation (24) by Equation (25) then gives: 

(27) 

This is essentially the equation, contours for which are plotted in 

Figure 3. In the plots, the constants K and pT have been taken to r~ve 

a ratio of unity, and different values of n are used as the plotting 

contour. It is interesting to note that the transconductance per unit 

current increases di~rectly as the exponent n is increased as lor~ as 

the value of y is significantly less than unity. 

In order to determine how these results might compare with results 

expected in typical kinds of structures, it is interesting to compute 

both the voltage curve and the transconductance-per-unit-current curve 

under the assumption that the charge distribution has the form 

18 
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2 
p = p (l - y ). (This probably gives the carrier distribution most 

a 
nearly like that which is obtained with ordinary devices. In any case, 

the representation normally will be between that given by this relation 

and ~he above relation (Equation 15) with n = 0.) In this instance, the 

total charge over the channel is found to be: 

(28) 

The equation for the channel current takes the form: 

(29) 

As before, the derivative of I with respect to y removes the integral sign. 

The voltage across the space-charge region is obtained from the 

integral: 

Jl 3 2 4 11 
V(y) = - (pT/2K) y [3y - y ]dy = - (pT/4K)[3y - y /2] . (30) 

y 

Once again, taking the ratio of pT to K to be unity, a curve expressing 

V as a function of y may be plotted as in Figure 2. 

Now, the transcondLctance per unit current may be obtained by differ-

entiation and division. The resu~ting equation for this charge distribution 

is: 

(31) 

This equation has also been plotted on Figure 3 subject to the condition 

that the ratio of p to K have a value unity. 
T 

Another possible distribution worthy of examination is a modified 

hyperbollic cosine function in the form: 

p = ph[cosh y - 1] (32) 

The value of ph in terms of pT is then given by the equation: 

20 



1 

PT = Ph ~ (cosh Y - l)dy = ph(sinh y - y) J
1 = 0.175 ph . (33) 

-- t.. 0 I Q 

The general equation for the channel current is: 

I= ~ J~ 5-7l4(cosh y - l)dy = 5-7l4~(sinh y - y) . (34) 

The ratio of di/dy to I then is: 

di/Idy (cosh y - 1)/(sinh y - y) . ( 35) 

The binding voltage in the space-ctarge region is given by: 

V(y) = - (5.714p /K) 
'T 

(sinh y 

2 11 = (5.714p'T/K)[cosh y - y /2] y ( 36) 

The voltage curve is plotted in Figure 2. 

By differentiation, as before, the value of dVjdy is: 

dVjdy = (5.714pTjK)(sinh y - y) (37) 

and the transconductance per 

9m/I = O.l7)K(cosh y - 1)/[pT(sinh y - y)
2

] • (38) 

This curve is also plotted in Figure 3. 

In reality, of course, it is ~.ot possible to obtain charge distributions 

which fit any of the above considered forms. For this reason, it is 

desirable to establish the representation in terms of a power-series 

expansion, and to perform the analysis based on the power series. The 

handling of the problem can be simplified by taking the power series in 

the form: 

p p [l + p, a . yj] . 
0 '----' J 

j 

(39) 
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In the instance, the value of p takes the form: 
'f 

(40) 

This equation may be solved for p and substituted into Equation (39). 
0 

Since as before the current flow is proportional to the integral in 

Equation (4o), but with the limits from 0 to y, the value of di/dy and I 

are readily shown to be: 

(42) 

The quotient of these two equations gives: 

di/Idy 
r \ · 1 r ~ ·+1 1 

= Lr l + / (a .YJ) I i 1 + \) ( aJ.yJ ,/ (. j + 1)) I (__, ' Jv , J I L W . - - • • J (43) 

In a similar manner, the equation for the binding voltage may be determined: 

v = -

= - (44) 

where the value of p again may be found from Equation (40). This 
0 

equation may be used directly if the value of the voltage is required, 

or it may be differentiated to give dVjdy for the problem at hand. When 

this is done, the result is: 
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As a result, the transconductance per unit current is given by the 

equation: 

\' I I 
+ L (a./(j + l))J/ 

J J 

( 45) 

(46) 

This equation gives, in terms of power expansions, the transconductance 

per w~it current which may be 

distribution. 

CONCLUSIONS 

It is shown that the distribution of charge within the channel for 

a field-effect transistor has a profound effect on its behavior. Both 

the total potential difference .required to switch the channel from 

fully conducting to completely off, and the transconductance per unit 

current are shown to be strongly dependent on the distribution of charge 

within the channel. In fact, both of these characteristics are improved 

through the use of doping profiles of the form 

n 
p = p y 

13 
(47) 

where the value of n is positive and significantly greater than unity, 

KEATS A. PULLEN, JR. LEE EVANS 
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APPENDIX 

CALCULATION TABLES 

TABLE I 

VALUES OF POTE11JTIAL AS A FfJNCTION OF y AND n 

y/n 0 1 2 l 4 Para Cosh -
o.o 0.50 0.33 0.25 0.20 0.17 0.62 0.25 

0.1 0.50 0.33 0.25 0.20 0.17 0.62 0.25 

0.2 0.48 0.33 0.25 0.20 0.27 0.60 0.25 

0.3 0.46 0.33 0.25 0.20 0.17 0.56 0.24 

0.4 0.42 0.31 0.24 0.20 0.17 0.51 0.24 

0.5 0.38 0.29 0.23 0.19 0.16 0.44 0.23 

0.6 0.32 0.26 0.22 0.18 0.16 0.37 0.22 

0.7 0.26 0.22 0.19 0.16 0.15 0.28 O.l9 

0.8 0.18 0.16 0.15 0.13 0.12 0.20 0.15 

0.9 0.10 0.09 0.09 0.09 0.08 0.10 0.09 

1.0 o.oo 0.00 0.00 0.00 o.oo 0.00 0.00 

TABLE II 

IT AT Tll<'Q n~ ,.... jT 1\ Q 1\ VTTl\Tf""rnTnl\J nv -.r fll\Tn ..... 
v.n...uv.wu v.l.· ~ ..1.. .ru..J ~ .l.' V.l.~v..L...L.V.I. V.L' .Y ~~J..I ll 

tiE. 0 1 2 J. 4 Para Cosh - - -
0.0 00 00 00 00 00 00 00 

0.1 100 500 3300 ~~()()() 2x105 hh_~ 21900 -/~~~ --·-' 
0.2 25 62.5 208 780 3100 16.3 2060 

0.3 11.1 18 41 103 270 7.12 389 

0.4 6.2 7.8 13 24 49 3.84 121 

0.5 4.0 4.0 5-3 8.0 12.8 2.40 50.2 

0.6 2.8 2.3 2.6 3.2 4.2 1.52 24 

0.7 2.04 1.5 1.4 1.5 1.7 0.96 13 

0 .. 8 1.56 () 07 0.81 0.76 () ?h n ""o 7 h 
'-'"./1 '-" • I ........, V•./;7 1 oV 

0.9 1.23 0.69 o. 57 0.42 0.37 0.30 4.7 

1.0 1.00 o.8o 0.33 0.25 0.20 o.oo 3.1 
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14. KEY V.ORDS· Kev v .. ;ords arf' technically meaningful terms 
or short phrases that charactt>rize a report and may ht> ust>cl as 
inrlex (•ntries for cataloging the rt>port. Kt>y worcls must be 
selt>ctt>cl sn that nn sPcuritv c!assificat ion is rt>quirt>cl. Iden
fiers. such as equipmE-nt model clesignation, trade name, 'nili
tarv projPct code name. gt>nr,raphic location. may he ust>cl as 
1<-t>v worcls hut w1ll he follo\vPcl hy an ind1catinn of tPchnical 
,·nntext. The assignment nf links, rules. ancl we1ghts is 

•lptional. 
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